Weak absorption test and defect analysis of optical coatings

HE Hong-bo, LI Xia, FAN Shui-hai, ZHAO Yuan-an, SHAO Jia-da, FAN Zheng-xiu

(Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China)

Abstract: Surface thermal lensing technique was developed into a high sensitive apparatus for weak absorption test and defect analysis of optical coatings. A continuous-wave 1064 nm Nd:YAG laser and a He-Ne laser were employed as pump source and probe source, respectively. Low noise photoelectrical components and a lock-in amplifier were used for photothermal deformation signal detection. In order to improve sensitivity, the apparatus configuration was optimized by choosing appropriate parameters, including pump beam spot size, chopper frequency, detection distance, waist radius and position of probe beam. Coating samples were mounted on a x-y stage. Different procedures, such as single spot, linear scan and 2-dimension area scan, could be performed manually or automatically. Various optical coatings were prepared by both electron beam evaporation and ion beam sputtering deposition. High sensitivity was obtained and low to 1×10^{-7} weak absorption was tested in low loss coating samples. For the sensitivity extreme of the system, 1×10^{-4} absorption was reason out to be measured by surface thermal lensing technique. Very small standard deviation was achieved for the reproducibility evaluation. Moreover, a spatial resolution of 25 micron was proved according to the area scan which traced out the profile of photothermal defects inside optical coatings. The system was employed in the analyses of optical absorption, absorption uniformity and defect characterization, and revealed the relationship between laser-induced damage and absorption of optical coatings.

Key words: surface thermal lens; absorption; coating defect; optical coating; sensitivity

1 Introduction

In modern optics, especially laser technology, absorption is one of the most important characters which must be considered, not only for optical properties, but also for laser-induced damage threshold (LIDT). For example, absorption defect has played a great role influencing laser induced damage behaviors of the dielectric optical coatings. In many applications, very weak absorption, 1×10^{-6} or less, should be measured and controlled.

However, the sensitivity of the best regular spectrometer is only low to 0.1%. Solutions had been found to resolve the weak absorption problem. The most useful techniques are laser calorimetric technique [1], mirage effect [2], photothermal deflection [3], and surface thermal lensing (STL) [4-5]. They have a very high sensitivity of 1×10^{-6}, 1×10^{-7}, or less.

In Shanghai Institute of Optics and Mechanics (SIOM), photothermal methods for weak absorption measurement were studied for many years, especially for STL. The SIOM research group had been included in the “Round Robin” weak absorption measurement from January 1998 to November 1999. Fig. 1 gives some results collected from the attendees of different countries. STL 3 stands for the SIOM results which are close to the overall average.

Efforts have been made in the recent years...
Results of "Round Robin" weak absorption measurement to develop the experimental setup into a practicable apparatus in SIOM.

2 Simplified principles

According to thermal transmission equation and linear expansion theory, under the irradiation of modulated laser beam, the photothermal deformation of an ideal optical coating, as shown in Fig. 2, was deduced and simplified theoretic relationship was given as

\[u = C_1 A P_{\text{pump}} \]

(1)

Where, \(u \) stands for the average central height of the alternative rise caused by the modulated Gaussian pump beam. \(A \), \(P_{\text{pump}} \) and \(C_1 \) represent absorption of optical coating, power of pump beam and a constant related to substrate and pump beam, respectively.

Fig. 2 Photothermal deformation of optical coating

Fig. 3 Schematic drawing of surface thermal lens effect photothermal signal \(S \) shows the alternative intensity of the reflected pump beam center, could be given as

\[S = C_2 u P_{\text{probe}} \]

(2)

Where, \(P_{\text{probe}} \) and \(C_2 \) are power of probe beam and a constant related to fiber position and probe beam, respectively.

Therefore, photothermal signal \(S \) is proportion to absorption \(A \) according to the above equations and satisfies a linear relationship with \(A \) as the following equation

\[S = C A P_{\text{pump}} P_{\text{probe}} \]

(3)

Where, \(C \) is a system constant.

Absorption of calibration samples are easy to be tested by Perkin-Elmer Lambda-900 spectrometer, and after calibration, absorption of different kinds of optical coatings could be conveniently measured according to equation (3).

3 Configuration optimization

A CW 1 064 nm laser was adopted as pump laser in the system, with a variable power from 20 to 90 W. A 30 mW He-Ne laser was employed as the probe laser. In order to get higher photothermal signal \(S \) and higher sensitivity of weak absorption coating samples, the system configuration had been optimized by choosing appropriate parameters, including pump beam spot size, chopper frequency, detection distance, waist radius and position of probe beam. According to our experimental and calculation, the main adjustments to the system configuration are briefly
explained as followings.

- Smaller pump beam on coating surface is helpful for improving both sensitivity and spacial resolution.
- Smaller probe beam waist radius is good for higher sensitivity because of the increasing signal to noise ratio. Making the system more compact is another profit.
- A proper probe beam waist position can give higher thermal lens amplitude.
- A proper detection position is also important for thermal lens amplitude.
- Lower chopper frequency provides longer thermal diffusion length and higher photothermal signal.

4 Performance

Linearity is the most important thing for the accuracy of the apparatus. Fig. 4(a), (b) and (c) show that the STL signal (photothermal signal) is proportion to the pump laser power from 6 mV to several μV. That means there is a very good linearity for the measurement of absorption of optical coatings.

Many optical coating samples were measured for absorption using the apparatus. As shown in Fig. 5, low to 5.5×10^{-6} (even 2×10^{-6}) could be tested directly. Since the STL signal is relatively high enough for the lock-in amplifier, it seems the sensitivity should be much better than 1×10^{-6} level. Actually, it is not difficult to deduce the sensitivity of the apparatus as followings.

According to equation (3) , for absorption of 5.5×10^{-6},

$$9.7 \mu V = C \times 5.5 \times 10^{-6} \times 20 W$$

Suppose the noise level is $0.2 \mu V$,

$$0.2 \mu V = C \times A_{\min} \times 20 W$$

Therefore, sensitivity can be deduced as $A_{\min} = 1 \times 10^{-7}$.
A very good sensitivity of 1×10^{-7} was achieved and approved in our experimental.

Fig. 7 An example of absorption scanning test around 1×10^{-8}.

Repeatability of absorption measurement is also very important. The linear scanning data of absorption in Fig. 6 were tested with different interval distances on the same coating sample. From 200 μm to 25 μm, more details were displayed but the profiles exhibited many similarities.

Absorption measurements were performed not only for linear scanning, but also for 2-D scanning. It could give very important information of the defect distribution, defect size and absorption value of defects or contaminations, as shown in Fig. 7. Moreover, a 25 μm spacial resolution was obtained for the photothermal defect microscopy.

5 Applications

The recent progresses in weak absorption measurement are very useful for various kinds of analyses on absorption of optical coatings, such as single spot, linear scan and 2-D raster scan of weak absorption, as well as time dependence of absorption. On the other hand, the technology can be used in different applications including absorption uniformity, LIDT, defect distribution, photothermal micrography.

6 Conclusions

Surface thermal lensing was developed into a practicable apparatus in SIOM, CAS.
The system configuration was optimized to get better performance, such as perfect linearity, high sensitivity and good repeatability. \(1 \times 10^{-6}\) level absorption was measured directly, a very good sensitivity of \(1 \times 10^{-7}\) was achieved and approved in our experimental. The utmost sensitivity was estimated to be \(1 \times 10^{-8}\).

The achievements in thermal lensing are helpful and important for optical coating characterization.

7 Acknowledgement

The research was supported by a project (011661076) funded by Science and Technology Community Shanghai Municipal.

References:

Brief professional biography of the author:

Dr. HE Hongbo was born in Feb. 1971. He received his PhD degree of Optical Engineering from Shanghai Institute of Optics and Fine Mechanics(SIOM), Chinese Academy of Sciences(CAS) in July 1999. He had become an associate research professor since Jan. 2001 and was appointed to a position of research professor in Oct. 2004. His research interests include laser-induced damage behaviors, weak absorption test and process development of optical coatings, especially high power laser coatings.