光学 精密工程  2018, Vol.26 Issue (8): 1896-1903   PDF    
1 470 nm大功率半导体激光溶脂仪控制系统设计
董宁宁, 崔锦江, 徐建根, 许杰     
中国科学院 苏州生物医学工程技术研究所, 江苏 苏州 215163
摘要: 为了实现大功率激光溶脂仪安全、稳定的输出,设计了1 470 nm大功率半导体激光溶脂的控制系统。对该控制系统所采用的驱动模块、温控模块、主控模块和人机交互模块等进行了研究。首先,采用FPGA实现恒流源的数字控制,功率反馈闭环实现恒功率控制,以提供1 470 nm大功率激光器和弱激光红光指示的驱动,单片机负责实现RS232的协议解析。采用数字模拟PID混合控制,根据NTC的反馈对TEC进行驱动实现激光器温度控制。设计了基于ARM Cortex-M3架构的STM32F系列微处理器主控模块和人机交互模块,实现了相关数据的输出显示与存储、触摸屏驱动及响应以及各接口控制。最后,利用MDK平台编写控制软件并对整机控制系统进行联调和测试。实验结果表明:整机输出功率与设置功率的偏差小于2%,安全性能符合国家医用电气安全通用标准的要求。该系统能够满足1 470 nm大功率半导体激光溶脂仪的稳定可靠、安全性高、抗干扰能力强等要求。
关键词: 半导体激光器      激光溶脂      控制系统      STM32     
Design of control system for 1470-nm high-power semiconductor laser lipolysis device
DONG Ning-ning , CUI Jin-jiang , XU Jian-gen , XU Jie     
Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
*Corresponding author: CUI Jin-jiang, E-mail:cuijj@sibet.ac.cn
Abstract: A control system for 1470-nm high-power semiconductor laser lipolysis was designed to realize safe and stable operation. The driving module, temperature control module, main control module, and man-machine interaction module of the control system were studied. First, a field-programmable gate array and a power feedback loop were used to realize a digitally controlled constant current source and constant power control, respectively, to drive the 1470-nm high-power laser and weak laser red indicator. SCM was responsible for the implementation of RS232 protocol analysis. Second, the digital analog proportional-integral-derivative control was used to drive a thermoelectric cooler according to the feedback of the negative temperature coefficient to realize the temperature control of the laser. Then, the microprocessor-based master control module and human-computer interaction module were designed to realize the display and storage of the output data and the driving of the touch screen. Finally, the Microcontroller Development Kit platform was used to carry out intermodulation and testing of the whole machine control system. The experimental results show that the deviation between the output power and the set power is less than 2%, and the safety performance of the entire device conforms to the national standard of medical electrical safety. The proposed control system can satisfy the requirements of 1470-nm high-power semiconductor laser lipolysis and ensure high safety and strong antijamming and stabilization.
Key words: semiconductor laser     laser lipolysis     control system     STM32    
1 引言

目前,半导体激光器因其质量轻、体积小、效率高等优点已在工业、商业、科研、信息、军事和医疗方面得到了广泛的应用[1-10]。其中,激光医疗设备现已广泛应用于各大领域的疾病治疗,例如眼科、外科、心血管科等。肥胖已与艾滋病、吸毒和酒癖并列为世界四大医学社会问题,并以每五年扩大一倍的趋势增加。传统减肥方法存在见效慢,过程痛苦且埋“毒”体内,手术过程易麻醉过度、术后诸多并发症等缺点。20世纪90年代初,美国的Apfelberg[11]等5位医生在美国FDA支持下开始研究激光的溶脂作用。后来Goldman[12]和Badin[13]等发现了激光具有溶脂紧肤、创伤小、术后恢复快、少见疲斑和出血[14]的优点,激光溶脂的理论体系开始逐渐成熟。1 470 nm新型半导体激光具有比常用1 320,980,1 064 nm波长高出多倍的水和脂肪吸收率,且溶脂效果最显著[15-16]。激光溶脂的安全性与其控制系统的稳定性密切相关。

本文设计了1 470 nm大功率半导体激光溶脂的控制系统,讨论了功率反馈闭环的恒功率驱动控制,研究了根据NTC反馈对TEC进行驱动数字模拟PID混合温度控制,基于ARM Cortex-M3架构微处理器的主控及人机交互控制,并利用MDK平台编写控制软件等控制系统的关键技术。实验表明,将1 470 nm大功率激光技术应用于脂肪消融的医学领域,保证系统功能要求的同时,使系统具有大功率激光的稳定输出,确保了激光溶脂的安全性。

2 1 470 nm大功率激光溶脂控制系统的构成及工作原理

图 1为1 470 nm大功率激光溶脂控制系统原理图。它主要由激光驱动控制、PID温度控制、1 470 nm大功率半导体激光器、主控制模块、人机交互模块以及系统电源等组成。激光驱动控制系统主要负责激光的稳定输出,并结合半导体激光器的P-I特性、V-I特性增加了激光器的保护设计。散热系统由PID温度控制和散热装置等组成,主要对热电制冷器(TEC)驱动控制,实现了高能量的热量搬运,为大功率激光器温度的精准控制提供有效保障。主控系统由STM32F103系列的微处理器、接口隔离电路等构成,主要完成相关数据的输出显示与存储,负责触摸屏驱动、信号响应、指示灯控制等功能。系统工作时,由FPGA实现恒功率的数字控制、TEC驱动和数字PID运算,单片机实现RS232的协议解析,主控制系统采用RS232协议传递激光器的工作参数、运行模式和报警信号等,人机交互界面根据需求设置模式切换、功率调节、脉宽调节等,并生成相应的控制指令集。为了给激光器提供充分的保护,引入了浮地结构的恒流驱动方式,同时提供了过载保护、输出短路等保护功能。

图 1 1 470 nm大功率激光溶脂控制系统原理图 Fig.1 Principle diagram of laser lipolysis control system
3 软硬件设计 3.1 激光器模块

本激光溶脂仪选用的核心光源是1 470 nm的半导体激光,它具有比常用1 320,980,1 064 nm高出多倍的水和脂肪吸收率,且溶脂效果最显著,如图 2所示。1 470 nm大功率半导体激光器由单根光纤输出,输出功率大于17 W,中心波长为(1 470±20) nm,光纤直径是400 μm,光纤数值孔径是0.22,半高全宽(FWHM)小于15 nm,工作电压小于3 V,工作电流小于60 A,工作温度为20 ℃。图 3是该半导体激光器模块的特性曲线,曲线A紫色是伏安特性曲线,曲线B蓝色是驱动电流与功率的关系曲线[17]

图 2 各波长对水和脂肪的吸收率和溶脂效果图 Fig.2 Absorption rate of water and fat and effect of liposuction

图 3 激光器特性曲线 Fig.3 Characteristic curve of laser

激光器模块中内置了一个光电二极管用于监测激光器的输出功率,监控并校准电流和输出功率的对应关系,监控电流与激光功率特性曲线如图 4所示。激光器采用波长为635 nm,输出功率小于5 mW的半导体激光作为指示光束。

图 4 监控电流-激光功率特性曲线 Fig.4 Characteristic curve of MPD monitor current and laser power
3.2 系统电源模块与标准化设计

系统电源模块主要为激光驱动控制模块、温度控制模块、主控制系统以及人机交互系统供电。本项目选用了市场上成熟稳定的医用开关电源Excelsys公司的XVD型开关电源,安全性能符合国家医用电气安全通用标准要求。由于激光器的驱动电流最大可达到60 A,且单个5 V模块的最大输出电流为40 A,考虑降额使用,采用2路5V40A模块并联。温控电路TEC采用4路17.5V15A模块两两并联,触摸屏的额定功率为8 W,24V5W风扇2台,因此选择了24 V总电流应为20 A即24V10A模块两个并联。12 V电压仅给激光驱动电源数字电路使用,因此选择了最小的12V3A模块。综上选择了5插槽电源,以达到系统的供电要求。

设计过程中不仅要考虑医用电气安全通用标准要求,还需要考虑电磁兼容(Electro Magnetic Compatibility, EMC)标准要求,它是检验设备电磁辐射和抗扰度的能力,主要包含了电快速瞬变脉冲群抗扰度、浪涌冲击抗扰度、传导发射和辐射发射等检测项目。系统电源在工作过程中的浪涌电流和尖峰电压、工频整流滤波使用的大电容充电放电、开关管高频工作时的电压切换以及输出整流二极管的反向恢复电流会产生大量的电磁干扰。本项目选择的系统电源符合EMC标准要求,并采用了屏蔽、接地、加装EMI滤波器的抗干扰处理。

3.3 激光驱动控制和PID温度控制模块

驱动控制和温度控制指标要求如下:

(1) 电压:0~2 V自适应;(2)电流:0~50 A连续可调;(3)电流纹波峰峰值:< 0.1%;(4)脉宽调制范围:100 μs~10 s;(5)功率控制稳定度:< 1.0%;(6)TEC驱动能力为:0~12 V,0~17 A;(7)TEC参数:最大电压为17.5 V,最大电流为15 A,采取两两并联的连接方式;(8)温度设定:15~35 ℃,精度为1 ℃。

根据技术指标要求设计开发了驱动和温度控制模块。激光驱动控制模块[18]的基本结构如图 5所示,包括1 470 nm半导体激光器的驱动电路、温控电路和控制电路,保证了1 470 mm半导体激光器的正常工作,与主控制模块采用RS232协议传递激光器的工作参数、运行模式、报警信号等信息。其中,单片机负责实现RS232的协议解析,由FPGA实现恒流源的数字控制信号、TEC的驱动信号、数字PID运算等功能。采用单片机进行串口协议解析,主控制电路芯片在恒流源部分,为了给激光器提供充分的保护,引入浮地结构的恒流驱动方式,同时提供输出短路、断路探测,过载保护、静电防护等保护功能。

图 5 激光电源模块的基本结构 Fig.5 Basic structure diagram of laser power supply module

激光驱动控制模块采用脉冲宽度调制技术,以减小驱动时的电路功耗。激光温控电路采用模拟PID控制与数字PID控制相结合的技术,实现可靠精确的温度控制。

3.4 主控制模块

主控制模块硬件电路设计主要包括微处理器、主控制模块电源电路、接口隔离电路、温度监测电路、功率反馈电路和串口通信电路等。

主控制模块主要完成依据用户需求以及治疗要求,在设备的总体技术指标范围内,控制激光器模块输出满足要求的激光,使激光器高稳定的工作。同时,主控制模块完成相关数据的输出显示与存储,负责触摸屏驱动、完成触摸屏信号的响应,指示灯控制等功能。在安全部分,主控制模块实时监测激光器的温度和输出功率,发现故障及时报警,并在激光器准备和出光时驱动红光指示让人安全操作激光。图 6为主控制模块结构示意图。

图 6 主控制模块结构示意图 Fig.6 Schematic diagram of main control module
3.4.1 微处理器

主控制模块核心芯片采用了Cortex-M3构架的STM32F103系列芯片,此芯片性能高、成本低,有2路DA输出和最高6路AD通道,用于输出电压控制信号,并对各传感器信号进行监视;带有2个DMA通道,可提升芯片运行效率;内建了嵌套向量中断控制器,满足医疗器械的实时安全控制要求。

3.4.2 主控制模块电源电路

系统电源输入主控制模块的电压为24 V直流,模拟和接口部分为5 V电压,微处理器部分电压为3.3 V,因此需要通过线性稳压电路和电压反转电路生成5 V和3.3 V电压。选用LM2576系列的稳压电路芯片和LM1117系列低压差电压调节器来进行电压转换设计。

3.4.3 接口隔离电路

在电路的阈值输出、峰值输出、红光指示输出、脚踏开关、遥控连锁等负载与单片机传输电路的输出两端均需进行电压转换。模拟部分以及外触发使用5 V电压,而单片机的工作电压是3.3 V,而且考虑到电路干扰问题,在信号输出端以及信号接收端各部分均使用了TLP521-1来设计隔离转换电压电路进行信号传输。TLP521-1是可控的光电耦合器件,使其前端与负载完全隔离,增加安全性,减少电路干扰,简化电路设计。

激光器模块内部集成了一个热敏电阻,该电阻随温度变化的阻值在5~35 kΩ,20 ℃基准温度时电阻为12.49 kΩ,温度和热敏电阻的对应关系为:

(1)

式中:T为激光器温度,R为热敏电阻,ABC为计算常数,其中A=0.001 129 148,B=0.000 234 125,C=8.77×10-8

温度反馈电路采用10 kΩ精密电阻分压方式,分压值VT与电阻R的关系为:

(2)

由此便可根据阻值求出温度,温控电路读取实时温度,便可对激光器温度进行控制,使它稳定在设定温度精度范围。

3.5 人机交互模块

本设计选用欣瑞达公司智能显示终端XS080SI-A1系列触摸屏。该触摸屏是一款基于ARM架构的嵌入式控制系统,以ARM为核心,扩展8.0英寸LCD触摸屏,采用直接变量驱动显示方式。智能显示终端通过专用图形应用服务软件SGUS设计,借助PC通过在图片上直接设置触摸屏交互方式和变量显示快速开发全图形界面,大大减少了编程工作量。

3.6 软件设计

主控制模块选用的STM32系列芯片基于ARM核心,常用的开发工具是keil公司开发的ARM开发工具MDK(Microcontroller Development Kit)。系统在STM32的IC基础上通过C编程实现逻辑控制,主要有定时计数器、外部中断、内部中断、通讯接口等。IC通过串口通讯协议接收触摸屏指令,经过中断解析后,将指令发送给相关电源,其中通过串口协议来更改电源的数据设置,通过外部IO触发控制电源工作。此外整机的工作、急停、温度监测和光纤监测等都是通过外部中断实现的,使实时性最大化。LED、蜂鸣器等一般性输出通过IO控制,激光输出运用定时器精确定时输出。

主程序的工作流程如图 7所示。首先进行系统的初始化,包括驱动、开关、定时器、串口、参数和待机界面初始化。接着进行硬件自检,检测脚踏开关标志、遥控连锁状态和光纤检查。然后进行温度稳定检测,当温度调节到设定温度时,反馈到屏幕切换到待机界面,表示温度调节完成,可以接收数据。下一步接收屏幕数据,首先选择工作模式,当选择连续工作模式时,调节功率;当选择多脉冲工作模式时,调节功率、脉宽和频率,设置完成后进入准备工作状态,微处理器接收并处理数据。踩下脚踏使开关闭合,闭合瞬间开中断,中断处理子程序,进行出光的一系列操作;松开脚踏使开关断开,执行停止出光、关闭定时器等一系列指令。

图 7 溶脂仪主控制程序的工作流程 Fig.7 Flow chart of main control program of lipolysis
4 测量实验与结果 4.1 激光驱动控制模块测试

激光驱动控制模块为激光器提供稳定的驱动电流,使激光高稳定输出。为了保护激光器,在测试驱动电路时先接假负载进行模拟测试。

激光电源模块驱动电路有软件控制和外触发控制两种模式。软件控制是将激光电源控制电路连接到PC,在调试串口发送指令使控制电路控制驱动电路实现电流输出;外触发控制是将5 V TTL电平接入到外触发控制端口来实现不同的功能。

根据图 8所示的测试结果可以得出,本驱动控制模块可实现软件控制和外触发控制模式的切换,按照设置电流在很小的误差内输出电流,精度在±2%左右,输出电流脉宽频率能实现精确控制,外触发控制响应及时,符合激光溶脂仪的工作需求,保证了系统驱动激光器的稳定性。

图 8 驱动控制模块不同工作模式下的电流测试结果 Fig.8 Currents of drive control module under different working modes

图 9 NTC温度监测图 Fig.9 Monitoring chart of NTC temperature
4.2 温度控制模块测试

温度对激光器输出稳定性有较明显的影响。激光器在连续工作时会产生大量热量,若不能及时散热,激光器温度会升高,输出功率变小且影响激光器寿命。激光电源模块的温控电路承担了调节激光器至设定温度和维持激光器工作温度稳定的任务。

实验发现,采用PID算法精确控制的激光温控电路通过控制TEC电压不断降幅震荡从而控制激光器温度不断逼近目标温度,并最终稳定在目标温度,具有温控精度高的优点;但需一定的时间才能达到设置点,而且在不同室温下到达设置点的时间也会有所不同,所以激光溶脂仪在开机温控自检时需在启动界面等待,一般在90 s内能够使温度进入温度监测稳定范围,使屏幕切换到参数设置界面。因此,本设计采用的激光温控电路能够实现快速控温功能,使激光器在稳定温度下工作,保证了输出功率的稳定性。

4.3 激光输出功率稳定性测试

为了达到良好的治疗效果,需保证激光功率的稳定输出,确保激光溶脂的安全性,为临床研究提供有效的实验数据。保证激光驱动控制模块和温度控制的稳定性,并依据图 1搭建了大功率激光溶脂系统,对其输出功率稳定性进行测试。

图 10 目标功率与实测功率平均值及两者偏差测试结果 Fig.10 Test result of deviation between target power and average of measured power

表 1 功率稳定性测试结果 Tab. 1 Test result of power stability

激光电源的高精度和高稳定性是实现激光稳定输出的保障,为了实现高稳定性驱动电流,激光电源驱动电路采用负反馈的控制方法。工作时,通过电阻电流采样反馈为驱动电流提供有源控制。所选用的半导体激光器在工作范围内具有很高的线性度。通过高精度输入电流控制和精准的激光器P-I特性曲线,控制激光器稳定输出。试验结果表明,整机输出功率与设置功率的偏差小于2%,在允许的功率偏差范围内,确保了激光输出的稳定性和安全性。

4.4 整机安全性能测试

采用南京长盛CS550系列的医用漏电流测试仪测试了整机的外壳漏电流,结果如下:正常状态为0.001 mA,单一故障为0.001 mA;对地漏电流,正常状态为0.193 mA,单一故障为0.377 mA;采用CS50系列的耐压测试仪测试了整机的耐受电压能力:在带电部分和未保护接地外壳部件之间耐压达到4 000 V;采用CS5800/Y系列的接地电阻测试仪测试了整机保护接地阻抗,保护接地电阻0.02 Ω。测试结果符合GB 9706.1-2007医用电气设备第1部分:安全通用标准对电击危险防护的相关要求,能够确保本治疗仪应用的安全性。

5 结论

本文根据医用大功率激光溶脂安全、稳定输出的要求,提出了1 470 nm大功率半导体激光溶脂控制系统的设计及测试方法,并介绍了1 470 nm大功率激光溶脂控制系统的结构和工作原理。然后对驱动模块、温控模块、主控模块和人机交互模块等进行了研究。最后,对驱动控制、温度控制模块以及整机激光输出功率的稳定性进行了测试。实验结果证明:整机输出功率与设置功率的偏差小于2%,安全性能符合国家医用电气安全通用标准的要求。

参考文献
[1]
李雯, 周伟. 半导体激光与ND:YAP激光在牙齿美白中的应用效果分析[J]. 东南大学学报:医学版, 2018, 37(1): 125-129.
LI W, ZHOU W. Application effect of semiconductor laser and ND:YAP laser in tooth whitening[J]. Journal of Southeast University:Medical Science Edition, 2018, 37(1): 125-129. (in Chinese)
[2]
王烨, 张岩, 秦莉, 等. 高功率半导体激光器列阵封装引入应变的测量[J]. 光学 精密工程, 2010, 18(9): 1951-1958.
WANG Y, ZHANG Y, QIN L, et al. Measurement of packaging-induced strain in high power diode laser bar[J]. Opt. Precision Eng., 2010, 18(9): 1951-1958. (in Chinese)
[3]
郭嘉杰, 周和平. 半导体激光血管外照射辅助治疗高脂血症(60例)的临床疗效观察[J]. 临床应用, 2017, 7(1): 104-106.
GUO J J, ZHOU H P. Clinical effect of the treatment of hyperlipidemia (60 cases) by using semiconductor laser equipment for vascular external irradiation treatment[J]. Clinical Application, 2017, 7(1): 104-106. (in Chinese)
[4]
张小红, 沈干. 半导体激光治疗顽固性激素依赖性皮炎的临床观察[J]. 组织工程与重建外科杂志, 2017, 13(5): 294-295.
ZHANG X H, SHEN G. Clinical observation of steroid-dependent dermatitis treated by diode laser[J]. Journal of Tissue Engineering and Reconstructive Surgery, 2017, 13(5): 294-295. DOI:10.3969/j.issn.1673-0364.2017.05.015 (in Chinese)
[5]
钱景. 半导体激光治疗仪在复发性口腔溃疡患者中的应用[J]. 医疗装备, 2017, 30(20): 104.
QIAN J. The application of semiconductor laser in patients with recurrent oral ulcer[J]. Medical Equipment, 2017, 30(20): 104. DOI:10.3969/j.issn.1002-2376.2017.20.083 (in Chinese)
[6]
邱晓拂, 张化儒, 杨国胜. 1470 nm半导体激光治疗良性前列腺增生的研究进展[J]. 现代泌尿生殖肿瘤杂志, 2017, 9(3): 190-192.
QIU X F, ZHANG H R, YANG G SH. Advances in the treatment of benign prostatic hyperplasia by 1470 nm semiconductor laser[J]. Journal of Contemporary Urologic and Reproductive Oncology, 2017, 9(3): 190-192. DOI:10.3870/j.issn.1674-4624.2017.03.015 (in Chinese)
[7]
董登峰, 周维虎, 纪荣祎, 等. 激光跟踪仪精密跟踪系统的设计[J]. 光学 精密工程, 2016, 24(2): 309-318.
DONG D F, ZHOU W H, JI R Y. Design of precise tracking system of laser tracker[J]. Opt. Precision Eng., 2016, 24(2): 309-318. (in Chinese)
[8]
刘晶儒, 胡志云, 张振荣, 等. 激光光谱技术在燃烧流场诊断中的应用[J]. 光学 精密工程, 2011, 19(2): 284-296.
LIU J R, HU ZH Y, ZHANG ZH R. Laser spectroscopy applied to combustion diagnostics[J]. Opt. Precision Eng., 2011, 19(2): 284-296. (in Chinese)
[9]
林嘉睿, 孟伟, 杨凌辉, 等. 激光跟踪仪的双面互瞄定向[J]. 光学 精密工程, 2017, 25(10): 2752-2758.
LIN J R, MENG W, YANG L H. Two-face reciprocal orientation for laser tracker[J]. Opt. Precision Eng., 2017, 25(10): 2752-2758. (in Chinese)
[10]
李景照, 陈振强, 朱思祁. 基于Yb:YAG/Cr4+:YAG/YAG键合晶体的被动调Q激光器[J]. 光学 精密工程, 2018, 26(1): 55-61.
LI J ZH, CHEN ZH Q, ZHU S Q. Passively Q-switched laser with a Yb:YAG/Cr4+:YAG/YAG composite crystal[J]. Opt. Precision Eng., 2018, 26(1): 55-61. (in Chinese)
[11]
APFELBERG D B. Results of multicenter study of laser-assisted liposuction[J]. Clin. Plast. Surg., 1996, 23(4): 713-719.
[12]
GOLDMAN A, SCHAVELZON D, BLUGERMAN G. Liposuction using Nd:YA laser.International Abs[J]. Plast Reconstr. Surg., 2003, 111(7): 2497.
[13]
BADIN A Z, MORAES L M, GONDEK L, et al. Laserlipolysis:flaccidity under control[J]. Aesthetic Plast Surg., 2002, 26(5): 335-339. DOI:10.1007/s00266-002-1510-3
[14]
BADIN A Z, GONDEK L B, GARCIA M J, et al. Analysis of laser lipolysis effects on human tissue samples obtained from liposuction[J]. Aesthetic Plast Surg., 2005, 29(4): 281-286. DOI:10.1007/s00266-004-0102-9
[15]
李琼. 1470 nm半导体介入式激光介导的新型人体轮廓塑形方法的临床研究[D]. 广州: 南方医科大学, 2013.
LI Q. Clinical Study of a New Type of Body Contouring Method for 1470 nm Semiconductor Laser[D]. Guangzhou: Southern Medical University, 2013. (in Chinese)
[16]
DEBOBRATO D, STEPHANIE R, PERRY R, et al. A high-throughput comparative characterization of laser-induced soft tissue damage using 3D digital microscopy[J]. Lasers in Medical Science, 2013, 28(2): 657-668. DOI:10.1007/s10103-012-1126-z
[17]
汪瑜. 半导体激光器热特性分析研究[D]. 长春: 长春理工大学, 2009.
WANG Y. Analysis and Research for the Thermal Characteristic of the Semiconductor Laser[D]. Changchun: Changchun University of Science and Technology, 2009. (in Chinese)
[18]
张志鹏, 丁向东, 季晓倩, 等. 一种双波长多模式半导体激光治疗仪控制系统的设计[J]. 高新科技, 2018(1): 31.
ZHANG ZH P, DING X D, JI X Q, et al. Design of a dual wavelength multimode semiconductor laser therapeutic apparatus control system[J]. High and New Science and Technology, 2018(1): 31. (in Chinese)