光学 精密工程  2018, Vol.26 Issue (10): 2605-2613   PDF    
水下自主航行器微光照相机驱动系统设计
吴厚德, 侯昱辰, 许文海, 赵明     
大连海事大学 信息科学技术学院, 辽宁 大连 116026
摘要: 提出了基于水下自主航行器的EMCCD微光照相机驱动系统设计方法。首先,分析了EMCCD输出噪声的组成,根据暗电流噪声和时钟感生噪声的关系,给出了常规功率驱动的器件选型原则和设计方法;讨论了使用图腾柱电路实现电子倍增驱动的功耗问题,并给出了改进方案;使用高频系统时钟实现了驱动相位和脉宽的微调,解决了驱动时序波形幅度重叠率不足的问题;最后,给出了使用CCD201-20搭建的水下相机结构和实验结果。实验结果表明,系统产生的常规驱动信号频率为时钟频率10 MHz,串行转移时钟的幅度重叠率优于50%,并行转移时钟的幅度重叠率优于90%,驱动信号的相位调整精度为18°,脉宽调整精度为5 ns,驱动波形稳定、平整,电子倍增驱动信号高电平可调,功耗相较于优化前降低7.2%。本文所介绍的EMCCD驱动系统设计方法充分兼顾了驱动系统的噪声、体积和功耗问题,可以广泛应用在水下微光成像乃至常规CCD领域。
关键词: 电子倍增电荷耦合器件      低照度相机      CCD驱动      自主水下航行器      现场可编程门阵列     
Design of driving system for AUV low-light level camera
WU Hou-de , HOU Yu-chen , XU Wen-hai , ZHAO Ming     
Information Science and Technology College, Dalian Maritime University, Dalian 116026, China
*Corresponding author: WU Hou-de, E-mail:wuhoude@dlmu.edu.cn
Abstract: A design method for a low-light level camera driving system based on an autonomous underwater vehicle was proposed. First, the noises of an electron multiplying charge-coupled device camera was analyzed, and the principle and method of designing conventional driving circuits was proposed taking into consideration the relationship between dark current noise and clock-induced charge noise. Next, the issue of power consumption in totem-pole circuits applied to electron multiplying drivers was discussed, and a power optimization plan was presented. A high-precision system clock was used for fine adjustments of the driving signal phase and pulse width and solving the problem of amplitude overlap rate insufficiency. Finally, the low-light level camera structure and experimental results were presented. The experiments indicate that the system-generated conventional driving signal frequency is 10 MHz. The serial transfer clock amplitude overlap rate and parallel transfer clock amplitude overlap rate are better than 50% and 90%, respectively. The phase adjustment accuracy of the driving signal and pulse width adjustment accuracy are 18° and 5 ns, respectively. The driving signal is stable and smooth, the electron multiplying driving signal is highly adjustable, and the power consumption is lowered by 7.2%. The parameters of noise, size, and power consumption were considered in this design. Thus, it can be widely used in underwater low-light level imaging as well as conventional charge-coupled devices.
Key words: EMCCD     low-light level camera     CCD driver     Autonomous Underwater Vehicle(AUV)     Field Programmable Gate Array(FPGA)    
1 引言

水下自主航行器(Autonomous Underwater Vehicle, AUV)以电池为动力源工作于深海,环境光照度低,因此配备使用大功率光源的常规相机会影响AUV的续航里程[1-2]。以电子倍增电荷耦合器件(Electron Multiplying Charge Coupled Device, EMCCD)为核心的相机具备出色的微光探测能力[3-4],其出现可以弥补可见光相机应用在AUV领域的不足[5]。AUV要求EMCCD相机具有低功耗、小体积和出色的微光探测性能,而EMCCD的驱动系统设计是保证以上指标的基础。

目前,国内外科技工作者针对EMCCD驱动系统设计做了大量工作[6-12]。归纳起来,驱动系统设计分为常规驱动设计、电子倍增驱动设计和驱动时序设计三个关键部分,但这三方面工作均存在不足。首先,常规驱动设计不能像传统CCD那样忽略时钟感生电荷(Clock Induced Charge, CIC)的影响,因为CIC同样要进入电子倍增寄存器中进行放大进而产生噪声,而多数报道略了这个问题。其次,电子倍增驱动有方波和正弦波两种实现形式,方波形式普遍采用甲类推挽放大电路,当前对驱动电路功耗优化不足[8, 10],这不仅对AUV应用不利,而且在EMCCD电子倍增增益稳定度性能上存在隐患,正弦波形式采用直接频率合成(DDS)和功率放大的设计方案[7, 9],在电路面积、相位对准难度和增益稳定度方面与方波形式相比不具备优势,并且“正弦形式功耗低于方波形式”的结论在照相机应用中也有待商榷。最后,EMCCD要求时序间有一定的幅度重叠率以保证电荷转移效率[13],而使用复杂可编程逻辑器件(CPLD)产生时序的方案[7, 11],只能通过外接延时线的方式精确调整驱动信号间的相位关系,这会大幅增大电路板面积,对水下应用极为不利,采用相位对准电路的方案[8]也存在电路板面积增大和功耗提升的问题。虽然采用多路FPGA数字时钟管理器的实现方案[12],能在一定程度上调整波形的脉宽和相位,但调整精度有限,在实际电路中也无法解决波形重叠率的问题。

本文针对以上问题,提出了应用于AUV的水下EMCCD微光照相机驱动系统的设计方法。在常规驱动方面兼顾了CIC的产生,电子倍增驱动方面优化了功率消耗并保障了增益稳定度,使用FPGA产生时序信号,提出高频时序核的CCD时序设计方法,保证了输出信号重叠率。实验证明,本驱动系统设计方法产生的时序驱动信号稳定平整,能实现相位的精确调整,从而充分发挥EMCCD的性能,可广泛应用于微光成像系统乃至传统CCD成像系统的设计中。

2 驱动系统设计方法 2.1 EMCCD的噪声分析

EMCCD的总噪声表达式为[14]

(1)

其中:σs是光子散粒噪声,σd是暗电流噪声,σc是时钟感生电荷噪声,σr是读出噪声,F是过剩噪声系数,G是电子倍增增益。设系统的量子效率为Qe,入射光通量为Sp,则可得EMCCD输出信噪比公式为:

(2)

由信噪比公式可见,在电子倍增增益足够大的情况下,可以忽略读出噪声,信噪比主要受暗电流噪声和时钟感生电荷噪声的影响。在TI公司的Impactron系列EMCCD的噪声分析中,往往忽略时钟感生电荷的影响[6],但是对于e2v的L3Vision系列EMCCD则不能一概而论。L3Vision系列芯片可以工作在翻转模式(IMO)下,即并行转移时钟的低电平设置为-5 V,衬底极电压设置为4.5 V,此时暗电流大幅下降,但该操作的代价是CIC相较于非翻转模式(NIMO)提高了近两个数量级[15],这样就缩小了暗电流噪声和CIC噪声的差距。当EMCCD传感器温度降低,由于CIC的温度不依赖特性,CIC噪声会占主导地位,有必要针对该噪声进行功率驱动优化设计。

e2v公司在减小CIC噪声研究中得到的结论[13]有:(1)CIC主要与并行转移时钟相关,受串行转移时钟的影响小;(2)CIC与并行转移频率反相关;(3)CIC与转移时钟上升沿和下降沿时间反相关;(4)CIC与并行转移驱动信号幅度正相关。由此可知,针对CIC噪声的功率驱动电路设计原则为:提高并行转移频率,增大上升沿和下降沿的时间,抑制并行转移信号的上冲和下冲。

2.2 常规驱动设计方法

CCD功率驱动可等效为对负载电容的充电和放电,瞬间充电电流的影响因素由电容充放电公式决定[16]

(3)

式中:C是EMCCD负载引脚电容,ΔV是驱动电压摆幅,t是上升沿或者下降沿的持续时间。以CCD201-20为例,依据式(3)计算得到的主要驱动信号电流需求如表 1所示。

表 1 CCD201-20驱动电流消耗 Tab. 1 Driving currents of CCD201-20

表 1可见,驱动信号的上升时间越短,负载电容越大,需要的瞬态驱动电流就越大,换言之,使用输出电流更大的驱动芯片,就可以获得更陡峭的驱动波形边沿。

在TI公司Impactron系列EMCCD的参考设计中,大量使用了EL7156芯片,该芯片具备3.5 A的峰值电流,这使得并行转移信号具有陡峭的边沿,可以提高帧频。这个方案对于工作在NIMO模式Impactron EMCCD是适用的,因为NIMO模式下暗电流噪声占主导地位,提高帧频恰恰可以通过压缩积分时间来降低暗电流噪声,提升电子倍增增益使用的动态范围。但对于工作于IMO模式的L3Vison EMCCD而言,由于CIC噪声的存在,驱动芯片电流输出过高不利于EMCCD性能的发挥。因此,L3Vison EMCCD的并行驱动电流应相应减小,满足沿时间要求即可。根据e2v提供的数据[13],并行驱动信号沿时间大于200 ns时,可以获得很好的CIC噪声特性,因此表 1中并行驱动沿时间设置为200 ns。根据计算得到的驱动电流,选择2 A峰值驱动电流的四路集成功率驱动EL7457要比3.5 A峰值驱动电流的EL7156更为合适,尽管EL7156也可以通过增加限流电阻的方式调整输出波形沿时间,但在体积严格受限的水下应用中,应使用EL7457。对于驱动电流相对较小的串行驱动信号,也可以使用EL7457。

EL7457具有4路驱动能力,这是该芯片的优点,同时也带来了问题,由于4路驱动对管共用电源和地,因此开关噪声会通过共用的通路耦合进其它通道中,所以EL7457需要更好的电源去耦。以CCD201-20的并行转移时钟驱动为例,给出EL7457的原理图如图 1所示。图中,驱动供电部分使用更大的钽电容,和不同封装0.1 μF多层陶瓷电容并联,以进一步提高去耦效果。

图 1 常规驱动电路原理框图 Fig.1 Schematic diagram of regular driving circuit

最后,在电路板布线过程中,将EL7457输出与CCD201-20之间的距离缩短至20 mm以内,因为安装冷指结构件的需要,此距离已经不能更短。根据传输线理论,边沿时间为10 ns、频率最高10 MHz、长度仅为20 mm的互联线并不会表现出传输线效应,因此没有阻抗匹配的必要,但仍然有必要在紧靠EMCCD引脚的位置串联一个小阻值电阻。一方面可以用该电阻来调整沿时间,另一方面可以减小静电以及驱动工作特性不良对EMCCD的冲击,提高系统稳定性。

2.3 电子倍增驱动设计方法

图 2所示为方波形式电子倍增驱动常用的图腾柱电路形式。该电路使用P型(Q1)和N型(Q2)场效应管,通过轮流开启的方式,对EMCCD引脚充电和放电。场效应管的栅极静态工作点由R1、R2、R3、D1、D2共同决定,输入信号经C1和C2去除直流、经D3和D4削波后控制Q1和Q2轮流打开。R4和R6用来调整上升沿速度,R5和R6用来调整下降沿速度,C3用于充电时提供瞬态高电流。为了让场效应管快速打开,前级还要增加3.3~5 V的转换电路,和扩流电路。

图 2 传统电子倍增驱动原理框图 Fig.2 Block diagram of conventional EM gain driving circuit

图腾柱电路形式用于EMCCD的缺点是功耗过高,根据电容充放电公式推导得到的功耗计算公式为[16]

(4)

式中:CHV是驱动引脚负载电容,CT是驱动对管的总输出电容,VS是输出电压摆幅,fr是读出频率。以CCD201-20工作在电子倍增电压为50 V(Vs=46 V)、负载电容为33 pF、对管总输出电容为138 pF(ZVP2106+ZVN2106)、读出频率为10 MHz为例,其功耗为2.92 W。如果驱动使用正弦波形式,将忽略驱动对管的电容,则耗电只有564 mW。单独从理论计算上看,图腾柱电路形式消耗的功率远高于正弦波形式电路,但正弦波形式有其自身的缺点。首先为使相位可调,正弦波的产生必须使用DDS,而其输出正弦波幅度都很小(通常为1 V峰峰值),后续电路需要近50倍的增益将其放大,放大正弦波同时亦放大噪声,因此增益稳定度会受到影响;第二,正弦波形式的产生需要较长的稳定时间,因此一般采用常开形式,并且多用于视频输出;第三,由于后续放大电路和数字控制端产生的正弦波形之间存在相位差,因此正弦波峰值和RФ2之间的相位关系需要在电路板上带片调整,增加了性能调试的难度和风险。相比于正弦波形式,方波形式不具备以上缺点,尤其是方波形式可以随需要开启的特性,特别适合照相机应用。本文所述微光照相机所搭载的AUV载体巡航速度为1.5 m/s,成像距离为10 m,视场范围大于7.5 m,帧率为3 s/frame,以每次拍照电子倍增驱动工作100 ms计算,使用方波的总平均功耗为97.3 mW,使用正弦波连续工作的平均功耗仍然为564 mW,相比之下,正弦波形式在功耗上已无优势。因此对于帧率不高的照相机系统,完全可以采用图腾柱的电路形式实现电子倍增驱动。

常用的图腾柱电路会导致额外的电流消耗,以L3Vision常用的ZVP2106和ZVN2106对管方案举例,ZVP2106的开启延时为7 ns,关闭延时为12 ns,而ZVN2106的关闭延时为12 ns,开启延时为7 ns,那么在对管的一个工作周期中,有近10 ns的时间。对管同时开启,这一方面造成了额外的功率损耗,使对管温度上升,对前端致冷不利;另一方面大量电流回地,形成地弹噪声源,并且电容C3中的电荷泄放殆尽,缓冲作用消失,增加驱动波形上升时间,进一步造成波形失真,影响增益稳定度。

图腾柱电路的改进形式[17]图 3所示,原来电路的单一输入被改为两路,分别由FPGA提供占空比大于70%的脉冲控制P管打开,占空比小于30%的脉冲控制N型管打开,开启时间相差10 ns以上,则可以解决对管同时导通的问题,该方法对于开关特性匹配不佳的对管尤为适用。

图 3 改进的电子倍增驱动原理框图 Fig.3 Block diagram of improved EM gain driving circuit
2.4 驱动时序设计方法

L3Vision系列EMCCD的并行移位寄存器为假两相结构,串行移位寄存器采用三相结构,与两相结构CCD不同的是,三相CCD没有内建势阱,因此e2v对于并行驱动时序和串行驱动时序的幅度重叠率做出了要求[13],即在IMO模式下,并行时钟幅度重叠率不得低于90%,串行时钟幅度重叠率不得低于50%。

从理论角度分析,由于驱动电路上升和下降的时间对称,只要时序信号间的上升沿和下降沿对齐就可使驱动信号达到50%的重叠率,但现实是多数集成驱动芯片的打开延时时间长、关闭延时时间短。表 2所示为目前EMCCD主要使用的集成驱动EL7457和EL7156的开关特性参数。因此在时序边沿对齐的情况下,驱动时钟的幅度重叠率将低于50%,无法满足L3Vison EMCCD的要求。

表 2 EL7457和EL7156的开关特性 Tab. 2 Switch characteristics of EL7457 and EL7156

根据数字频率合成理论,倍频越高,分频后可调整相位的精度越高,当EMCCD读出频率为10 MHz,重叠时间要求大于50%,设脉宽调整精度至少为5 ns,则系统时钟应大于200 MHz。所以本设计通过FPGA的数字频率管理器(DCM)将输入频率50 MHz合成200 MHz时钟,然后通过计数器降频的方式产生了EMCCD中的并行转移时钟、串行转移时钟和电子倍增驱动时钟。串行驱动时序RФ1、RФ2、RФ3、ФR以及电子倍增驱动时序RФ2HV共用一个周期为20的分频计数器,各路驱动信号在不同的计数值上升或下降,就能达到精确调整脉宽和相位的效果,脉宽调整精度为2π/20=18°,并行转移时钟也采用相同的方式产生。带有5 ns幅度重叠的串行转移时钟仿真图如图 4所示,串行转移时钟RФ1、RФ2、RФ3(对应图中H1、H2、H3)之间的跳变沿相差5 ns,并行转移时钟跳变沿间相差200 ns,完全满足设计要求。

图 4 CCD201-20时序仿真图 Fig.4 Simulation diagram of time sequence of CCD201-20

本系统FPGA采用Xilinx公司的Spartan6系列芯片来产生时序信号,其运行频率可以达到500 MHz,若将系统运行频率提高到400 MHz,则相位和脉宽的调整精度就可以提高到2.5 ns,但是考虑到频率升高带来的功耗和散热问题,应选择满足幅度重叠率要求的最低频率,因此FPGA的系统时钟设定为200 MHz。

3 实验结果 3.1 驱动电路实验结果

实验中,采用示波器(Agilent MSO-X 3054A)观察电路板上的实际驱动波形,以确定常规驱动电路和电子倍增驱动电路设计的正确性。采用可监控输出功率的电源(Agilent E3633A)来统计改进前后的电子倍增电路的功耗情况,最后给出系统成像结果。

3.1.1 常规驱动信号设计结果

图 5是并行转移时钟IФ1和IФ3的波形,驱动时钟频率为1 MHz,波形重叠率大于90%,符合减小L3Vision系列图像传感器CIC噪声的要求。

图 5 并行转移信号波形 Fig.5 Waveform of parallel transfer signal

本相机中时序波形的设计参照e2v公司于2015年发布的CCD201-20手册的第四版(A1A-100013 Version 4),该手册相比2011年第三版修改了并行时钟波形重叠率的定义,因此时序波形在低电平部分没有重叠。本相机针对第四版手册这一改动与第三版时序进行了测试,在图片质量上没有发现肉眼可见的差异,于是相机最终使用第四版手册中规定的时序。

图 6是串行转移时钟RФ1、RФ2和RФ3的波形,驱动时钟频率为10 MHz,上升时间为13 ns,驱动间的幅度重叠率大于50%,时序关系满足手册要求,且波形平稳无振铃。

图 6 串行转移信号波形 Fig.6 Waveform of serial transfer signal

实测驱动波形参数与数据手册限定值的对比如表 3所示。本设计中并行转移时钟的波形重叠时间为200 ns,脉冲宽度为600 ns,等于手册规定的最小值,目的在于提高并行转移时钟的频率。这样做一方面有利于减小CIC噪声,另一方面有利于图像尽快从感光区转移到存储区,减少杂光的干扰。考虑到EL7457的驱动能力和水下相机体积受限等因素,串行转移时钟周期的设计值为100 ns,而不是手册的典型值67 ns。为减小串行转移时钟的上过冲和下过冲,使用终端电阻调整波形的上升下降时间为13 ns,符合设计要求。串行时钟的边沿重叠时间通过FPGA时序核调整为5 ns,加上边沿时间,总重叠时间约为12 ns,可以保证串行转移效率。

表 3 驱动波形参数的实际值和限定值对照表 Tab. 3 Measured value and design limit of driving form parameters
3.1.2 电子倍增驱动设计结果

图 7为电子倍增驱动波形,频率为10 MHz,高电平的测量值为49.3 V,已达到设计最大电压摆幅。由于驱动电路的高压电源和低压电源的电流输出能力不同,因此时钟上升时间略长于下降时间,但波形稳定平滑,满足设计要求。

图 7 电子倍增信号波形 Fig.7 Waveform of EM gain signal
3.1.3 改进图腾柱电路的功耗测试

在系统供电电压为24 V的情况下,测量待机功耗,然后测量只有电子倍增电路工作情况下的功耗,两个功耗相减,就能得到电子倍增电路的实际功耗。经实测,在RФ2HV输出电压的最大电平为49.3 V时,使用传统图腾柱形式电路连续工作时电流消耗为335 mA(8.04 W),使用优化后的电路电流消耗为311 mA(7.46 W),功耗降低7.2%。图 8所示为优化前后图腾柱电路在不同输出电压下的系统总电流消耗情况,可见电路功率消耗随驱动电压增加呈近似线性关系,而不是指数关系。这是因为当驱动电压降低,高电压供电LDO的效率随之下降,因此抵消了功率下降的程度,所以曲线看起来呈现出线性特征。

图 8 电子倍增电路功耗对比图 Fig.8 Comparison of EM circuit power consumption

需要说明的是,改进后的电路实际功耗为7.46 W,与理论计算的2.92 W相去甚远。其原因有三方面:(1)电子倍增高压供电采用三级DC-DC,降低了功率使用效率;(2)电子倍增末级供电采用LDO,其效率随输出电压的下降而下降,进一步降低了电源使用效率;(3)电路中驱动对管的导通电阻以及充放电回路的电阻也以发热的形式消耗额外功率。所以此功耗在合理范围之内。

3.2 相机系统实验结果

水下微光照相机系统框图如图 9所示。除了本文设计的驱动系统外,照相机还包括致冷模块、模拟前端(AFE)模块、FPGA模块、以及用于存储图像的存储单元。AUV通过以太网接口控制微光照相机的自检、工作和待机,在AUV返航后,岸上主机可以通过以太网下载相机中的数据。

图 9 微光照相机系统框图 Fig.9 Block diagram of low-light level camera system

照相机系统机芯如图 10所示,机芯结构高度紧凑,系统所有接口位于相机尾端,方便与耐压仓接驳,机芯最大外径为110 mm。

图 10 低照度相机机芯实物图 Fig.10 Photo of low-light level camera unit

在室温情况下关闭致冷器,在靶标处照度为1.3 lux时,使用低照度相机对靶标成像,曝光时间为30 ms,此时电子倍增设定值为0,对应驱动电压为39.6 V,获得图像如图 11所示。可见此时靶标图像清晰无噪点。

图 11 低电子倍增增益下相机的输出图像 Fig.11 Output image of low-light level camera at low EM gain

打开制冷器,将传感器温度降至-20 ℃,在靶标照度为5×10-4 lux的情况下,再次对靶标成像,曝光时间仍为30 ms,此时电子倍增增益设定值为30,对应电子倍增电压为45.7 V。由图 12可见,由于环境照度极低,图像对比度明显下降,并且由于电子倍增增益的提高,图像的颗粒度明显上升,但是靶标中主体内容仍然清晰可辨认。

图 12 高电子倍增增益下相机的输出图像 Fig.12 Output image of low-light level camera at high EM gain
4 结论

本课题基于AUV水下应用,系统地讨论了EMCCD驱动设计的三个要素,即常规驱动、电子倍增驱动和时序驱动,并对该三个要素提出了改进方案,给出了EMCCD驱动系统的通用设计原则和方法。使用目前e2v公司最高端的EMCCD CCD201-20搭建系统,并验证了该设计方法的有效性。经实验验证,本文所述的驱动系统在驱动波形和时序关系上充分满足e2v公司对其EMCCD传感器的优化建议,能充分发挥EMCCD的性能,可以广泛应用于EMCCD成像系统的研发中,尤其适合系统体积受限的水下照相机系统。

参考文献
[1]
SCHECHNER Y Y, KARPEL N. Recovery of underwater visibility and structure by polarization analysis[J]. IEEE Journal of Oceanic Engineering, 2005, 30(3): 570-587. DOI:10.1109/JOE.2005.850871
[2]
熊思齐. 无人水下航行器发展现状及若干关键技术探讨[J]. 声学技术, 2015, 34(2): 262-264.
XIONG S Q. The investigation of UUV's development status and key techniques[J]. Technical Acoustics, 2015, 34(2): 262-264. (in Chinese)
[3]
金伟其, 陶禹, 石峰, 等. 微光视频器件及其技术的进展[J]. 红外与激光工程, 2015, 44(11): 3167-3176.
JIN W Q, TAO Y, SHI F, et al. Progress of low level light video technology[J]. Infrared and Laser Engineering, 2015, 44(11): 3167-3176. DOI:10.3969/j.issn.1007-2276.2015.11.001 (in Chinese)
[4]
STEVENS E, CLAYHOLD J, DOAN H, et al. Recent enhancements to interline and electron multiplying CCD image sensors[J]. Sensors(Switzerland), 2017, 17(12): 2841.
[5]
HOU Y C, WU H D. Design of EMCCD driving system for underwater low-Light camera[C]. 2016 International Conference on Mechatronics Manufacturing and Materials Engineering, Hong Kong, China: EDP Sciences: 01002.
[6]
武星星, 刘金国, 周怀德, 等. 基于EMCCD和CMOS的天基微光成像[J]. 红外与激光工程, 2016, 45(5): 0514002-1-0514002-6.
WU X X, LIU J G, ZHOU H D, et al. Spaceborne low light imaging based on EMCCD and CMOS[J]. Infrared and Laser Engineering, 2016, 45(5): 514002-1-514002-6. (in Chinese)
[7]
杨少华, 李斌康, 郭明安, 等. 高性能分离式远程EMCCD成像系统研制[J]. 仪表技术与传感器, 2016, 12: 104-109.
YANG SH H, LI B K, GUO M A, et al. Design of distributed EMCCD image system with high sensitivity and remote data acquisition[J]. Instrument Technique and Sensor, 2016, 12: 104-109. (in Chinese)
[8]
张龙, 何伟基, 顾国华, 等. 电子倍增CCD模拟前端设计与信号优化[J]. 红外与激光工程, 2014, 43(7): 2263-2269.
ZHANG L, HE W J, GU G H, et al. Design and signal optimization of analog front end of EMCCD[J]. Infrared and Laser Engineering, 2014, 43(7): 2263-2269. DOI:10.3969/j.issn.1007-2276.2014.07.041 (in Chinese)
[9]
PENG W, HE Z, QI L. Research of timing design and adjusting methods of EMCCD[C]. 8th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optoelectronic Materials and Devices, 2016, 9686: 968604-1-968604-6. http://www.researchgate.net/publication/309447112_Research_of_timing_design_and_adjusting_methods_of_EMCCD
[10]
赖积斌, 任国强, 王明富, 等. 高频非对称EMCCD增益驱动电路设计[J]. 现代电子技术, 2015, 38(22): 111-114.
LAI J B, REN G Q, WANG M F, et al. Design for gain driving circuit of high frequency and asymmetric EMCCD[J]. Modern Electronics Technique, 2015, 38(22): 111-114. (in Chinese)
[11]
杨少华, 郭明安, 李斌康, 等. 百万像素电子倍增CCD数字化相机的设计[J]. 光学 精密工程, 2011, 19(12): 2970-2976.
YANG SH H, GUO M A, LI B K, et al. Design of digital EMCCD camera with mega pixels[J]. Opt. Precision Eng., 2011, 19(12): 2970-2976. (in Chinese)
[12]
谢云, 李彬华, 何春. EMCCD相机数字控制系统的VHDL设计[J]. 现代电子技术, 2013, 36(12): 113-117.
XIE Y, LI B H, HE CH. VHDL design of digital control system for EMCCD cameras[J]. Modern Electronics Technique, 2013, 36(12): 113-117. DOI:10.3969/j.issn.1004-373X.2013.12.035 (in Chinese)
[13]
eledyne e2v Limited. Optimising Operation of L3Vision CCD Sensors[Z/OL]. https://www.e2v.com/products/imaging/technical-papers/, 2006.
[14]
DAIGLE O, CARIGNAN C, GACH J L, et al. Extreme faint flux imaging with an EMCCD[J]. Publications of the Astronomical Society of the Pacific, 2009, 121(882): 866-884. DOI:10.1086/605315
[15]
Teledyne e2v Limited. Dark Signal and Clock-Induced Charge[Z/OL]. https://www.e2v.com/products/imaging/technical-papers/, 2006.
[16]
许文海, 吴厚德. 超高分辨率CCD成像系统的设计[J]. 光学 精密工程, 2012, 20(7): 1603-1610.
XU W H, WU H D. Design of ultra-high resolution CCD imaging system[J]. Opt. Precision Eng., 2012, 20(7): 1603-1610. (in Chinese)
[17]
黄强强. EMCCD驱动电路设计与优化[D].南京: 南京理工大学, 2014.
HUANG Q Q. Design and Optimization for EMCCD Driving Circuit[D]. Nanjing: Nanjing University of Science & Technology, 2014. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2521660