光学 精密工程  2018, Vol.26 Issue (10): 2536-2545   PDF    
基于二阶锥规划无标定参照物的手眼标定
李巍1, 董明利2, 吕乃光1,2, 娄小平2     
1. 北京邮电大学 信息光子学与光通信研究院, 北京 100876;
2. 北京信息科技大学 光电测试技术北京市重点实验室, 北京 100192
摘要: 为了克服传统机器人手眼标定方法求解手眼关系及机器人坐标系与世界坐标系方位关系对标定参照物的依赖,提出一种基于二阶锥规划的无标定参照物手眼标定改进方法,并搭建相关实验系统进行验证。首先,利用运动恢复结构算法解算定义在一个尺度因子基础上的相机运动矩阵;然后,引入对偶四元数理论参数化标定方程中的旋转矩阵和平移向量;最后,通过二阶锥规划方法同时求解相机运动矩阵尺度因子、手眼关系及机器人坐标系与世界坐标系方位关系的最优解。仿真和实测结果表明,在没有标定参照物作为测量基准的情况下,标定结果中旋转参数相对误差为3.998%,平移参数相对误差为0.117%。与其他标定方法相比,该方法提高了无标定参照物模式下机器人手眼标定精度,扩展了手眼标定方法的应用范围。
关键词: 机器人      标定参照物      手眼标定      二阶锥规划      运动恢复结构     
Hand-eye calibration method without a calibration reference based on second-order cone programming
LI Wei1 , DONG Ming-li2 , LÜ Nai-guang1,2 , LOU Xiao-ping2     
1. Institute of Optical Communication & Optoelectronics, Beijing University of Posts & Telecommunications, Beijing 100876, China;
2. Beijing Key Laboratory of Optoelectronics Measurement Technology, Beijing Information Science & Technology University, Beijing 100192, China
*Corresponding author: LI Wei, E-mail:liweikilary@163.com
Abstract: In order to overcome the restrictions of traditional hand-eye methods for determining hand-eye correspondence and robot-world orientation with a calibration reference, an improved hand-eye calibration approach without a calibration reference is proposed based on second-order cone programming. A relevant experimental system is established for its validation. First, a structure-from-motion approach is used to recover the camera motion matrix up to scaling. Then, the rotation and translation matrix in the calibration equation is parameterized by dual quaternion theory. Finally, the second-order cone programming method is used to simultaneously determine the optimal solution for the scale factor of the camera motion matrix, the robot-world calibration and the hand-eye calibration. Both the simulation and experimental results indicate that, for the calibration precision, the relative error of rotation is 3.998% and the relative error of translation is 0.117% in the absence of a calibration reference as a benchmark. Compared with other calibration methods, the proposed method can effectively improve the accuracy of robot-world calibration and hand-eye calibration without a reference, and extend the range of applications of the hand-eye calibration method.
Key words: robot     calibration reference     hand-eye calibration     second-order cone programming     structure-from-motion    
1 引言

自从1966年世界上第一台具有视觉传感器的智能机器人Shakey诞生以来,视觉传感器广泛应用于机器人自主避障和导航,医疗手术,汽车制造等领域[1, 2]。在利用机器人视觉系统进行自主作业时,需要将摄像机固定在机器人手臂的末端执行器上构成手眼系统,通过视觉传感器给机器人运动控制系统提供眼的功能。评估上述机器人视觉系统测量精度的关键步骤之一是准确地测算出机器人坐标系与视觉传感器坐标系间的相对方位关系[3],即Tsai[4]所定义的机器人手眼标定过程。

目前大部分手眼标定方法都是通过精确标定的参照物(如棋盘格靶标)求解相机姿态变换矩阵,具有代表性的方法有Zhuang等[5]的线性二分法、Horaud等[6]的单位四元数法、Shah等[7]的矩阵直积法、Daniilidis和Ulrich等[8, 9]的对偶四元数法、Li等[10]的基于李群李代数的概率统计法、Heller和Li等[11-13]的全局优化方法、Wu[14]等使用于双臂协作机器人的同步标定方法以及Amy等[15]的多相机迭代法。然而,在一些特殊应用领域,例如移动机器人和手术机器人,考虑到载重和无菌条件限制,很难通过传统的标定参照物完成手眼标定过程。鉴于此,Andreff等[16]提出一种不需要标定参照物的手眼标定改进方法,利用运动恢复结构(Structure From Motion,SFM)方法,直接从自然场景中获得缺失尺度因子的相机姿态变换矩阵,将未知的尺度因子与手眼关系一同代入手眼标定方程进行求解。近年来,这种不需要标定参照物的手眼标定改进方法获得学者们的普遍重视和研究。例如,在Andreff的手眼标定模型基础上,Schmidt等[17]提出基于对偶四元数扩展的非线性最优化法,Heller[18]和陈明伟等[19]提出基于二阶锥规划的全局优化方法、Pachtrachai等[20]提出的基于计算机辅助设计(Computer Aided Design,CAD)导入模型的微创手术机器人手眼标定方法以及Wang等[21]提出的微创手术机器人远程控制中心(Remote Center-of-Motion,RCM)机构视觉标定法。然而,这些方法只能计算手眼关系,不能同时求解出机器人坐标系与世界坐标系方位关系,且受特征点匹配误差和未知尺度因子的影响,基于SFM场景重建的无标定参照物手眼标定方法往往精度较低,不能满足移动机器人视觉导航和定位日益增长的精度需求。为解决这个问题,2017年,Park等[22]以角度投影误差为优化模型提出基于分支定界法的全局优化方法,但该模型只适用于无平移量的云台摄像机旋转变换关系的优化,不能应用于移动机器人系统。

针对上述问题,本文提出一种基于二阶锥规划无标定参照物手眼标定改进方法。首先利用SFM方法求解缺失尺度因子的摄像机姿态变换矩阵;然后推导了基于SFM的机器人手眼关系以及机器人坐标系与世界坐标系方位关系标定模型,并将标定模型中的非线性误差函数转化为具有凸可行域的二阶锥规划问题进行求解;最后以没有标志点的普通参照物进行对比实验。结果表明:与其他基于SFM的标定方法相比,该方法可以提高手眼关系和机器人坐标系与世界坐标系方位关系求解精度。具有操作简单、成本低廉、适用范围广等优点。

2 手眼标定模型

图 1所示,将机器人手眼关系X以及机器人坐标系与世界坐标系方位关系Y描述为矩阵方程:

(1)
图 1 AX=YB手眼标定模型示意图 Fig.1 Schematic for hand-eye calibration described by AX=YB

其中:A表示不同姿态的摄像机坐标系到参照物世界坐标系的变换矩阵,B表示为不同姿态的机器人工具坐标系到机器人基坐标系的变换矩阵。

2.1 基于标靶参照物的AX=YB标定方程

当使用精确的靶标作为参照物,令RA, RX, RY, RB分别表示AXYB变换矩阵中的旋转部分,tA, tX, tY, tB分别表示AXYB变换矩阵中的平移部分,则矩阵方程(1)可以展开表示为:

(2)
2.2 基于运动恢复结构的A(s)X=YB标定方程

当没有精确的靶标作为参照物,直接拍摄任意具有丰富纹理信息的场景时,因缺乏拍摄场景的实际尺度信息s,方程(2)中的旋转矩阵方程不变,而平移向量与真实值之间存在一个未知的尺度因子s。此时方程(2)可以重新表示为:

(3)

将式(3)移项整理可以简化为标准非齐次线性方程组的形式,此时可以运用最小二乘方法求解对应的旋转和平移部分。鉴于对偶四元数可以同时描述刚体旋转和平移关系(简称螺旋运动)的优点,用对偶四元数参数化法求解A(s)X=YB标定方程。

3 A(s)X=YB方程对偶四元数解法

用对偶四元数来描述刚体的螺旋运动,设ab分别代表 2个连续有限运动的四元数,则由四元数矩阵乘法可易性可得:

(4)

其中M(b)+称为矩阵M(b)的蜕变矩阵。

为一个单位对偶四元数,则其非对偶部q为单位四元数,对偶部分q′为四元数,且满足:

(5)
3.1 旋转矩阵求解

由于尺度因子不影响旋转矩阵方程的求解,先考虑方程(3)中旋转部分的参数化过程,设a, qx, qy, b分别表示旋转矩阵RA, RX, RY, RB所对应的单位四元数,则可以将方程中的旋转部分表示成四元数相乘的等式:

用式(4)的四元数矩阵乘法展开上式移项整理可得:

(6)

其中:V(a, b)表示由单位四元数a, b所确定的4×8的矩阵,未知量q(x, y)表示旋转矩阵RX, RY对应的四元数。通过奇异值分解可以得到q(x, y)对应的四元数解,从而可以求解旋转矩阵RXRY

3.2 平移向量求解

确定了标定方程(3)中的旋转部分,再考虑平移部分的求解。定义a′, qx′, qy′, b′分别为矩阵A, X, Y, B所对应的对偶四元数的对偶部,则标定方程(3)可以用对偶四元数乘法将其对应的对偶部分展开整理得:

将上式用四元数矩阵乘法展开移项整理可得:

(7)

其中:Ci表示4×9的矩阵,x表示由未知的平移向量tX, tY对应的对偶部分和尺度因子s组成的9维向量, di表示4维向量。经n(n≥3)次测量得到4n×9阶矩阵C=[C1, C2, …, Cn]和4n维向量D=[d1, d2, …, dn],再加上式(5)对偶四元数的正交性和单位性,则上式非齐次方程组可以表示为带有约束条件的最优化问题:

(8)

其中‖·‖2表示欧几里得范数,U0RN,利用拉格朗日乘法和LM(Levenberg Marquardt)非线性优化算法,式(8)中9元2次目标函数优化问题可以收敛到极值。但鉴于该问题的目标函数和约束条件都为多元多项式,求解过程中存在着非凸性和过参数化的风险,优化结果的准确性很大程度上取决于未知量q′(x, y)初值的选取和参数化策略的选择,在测量噪声存在的情况下,如果初值估计不正确或所采用的参数化方法与优化问题不匹配,则计算结果很有可能收敛到局部最优解。因此如何准确迅速地得到全局最优解,是最优化目标函数(8)必须要解决的问题。

4 手眼标定优化问题的SOCP描述 4.1 二阶锥规划简介

标准二阶锥规划问题(Second Order Cone Programming,SOCP)可以描述为:

其中:x是需要求解的多元变量,系数矩阵c, Figi是已知的数据集,Usoc为如式(10)所示的二阶锥或旋转二阶锥,优化目的是最小化误差函数集中的最大误差。

(9)
(10)

SOCP本质上是一种凸规划,其求解过程中减少了陷入局部最优解的风险,利用现有的凸优化工具箱(CVX)可以在多项式时间内求解最优结果。

4.2 基于二阶锥规划的标定模型参数优化

公式(8)带约束条件的目标函数最优化问题本质上是一个非凸规划问题。虽然神经网络、模拟退火、禁忌搜索以及分支限界法等都是具有通用性的启发式全局优化方法,但这些方法技巧性很强,在求解过程中需要考虑许多参数,才能使其执行最优,不具有普遍适用性。而半定规划(Semidefinite Programming, SDP)虽然是直接面向全局优化问题的方法,理论上可以保证解的最优性,但计算效率太低。二阶锥规划(SOCP)优化方法,作为线性规划(Linear Programming, LP)的推广,可以看作是半定规划(SDP)的一种特例,在求解非光滑凸规划问题时,兼具解的最优性和计算高效性双重特性。广泛应用于电力系统和金融信息等领域的组合优化问题[23]

为了最大限度确保式(8)中求解的平移向量tX, tY和尺度因子s每次优化结果都能收敛到全局最优解,需要结合手眼标定理论与SOCP松弛方法,将原最优化问题转化为标准的二阶锥规划问题求解。式(8)手眼标定方程目标函数可以表示为L2范数和最小的形式:

(11)

根据SOCP问题的特点,将上式目标函数作SOCP松弛,给目标函数引入约束变量δ>0,则式(11)可以等价变形为:

(12)

鉴于上述优化模型中的所有等式约束是线性的,而不等式约束可以抽象为x1的数学形式,刚好符合式(9)二阶锥的约束条件,所以上述优化模型是一个标准二阶锥规划问题。

上述转化过程的简图如图 2所示(彩图见期刊电子版),首先,将原问题非凸可行域Uoriginal松弛成为一个凸二阶锥可行域Usoc,此时原标定方程已转换到SOCP的凸空间上,再利用高效的内点算法求解SOCP的全局最优解。由于二阶锥松弛的引入,可行域Usoc中得到的最优解(图 2(b)红点G)是原问题的一个下界解,若该最优解(图 2(a)红点G)是原可行域Uoriginal中的点,则其便是原问题的最优解。

图 2 二阶锥规划示意图 Fig.2 Second-Order cone programming schematic drawing

需要说明的是如果最终结果不需要求解尺度因子s,可以在式(3)平移方程两端都乘以反对称矩阵tA,消去尺度因子s如式(13)所示,再利用上述二阶锥规划方法求解平移向量。

(13)

为了提高机器人手眼关系X以及机器人坐标系与世界坐标系方位关系Y的求解精度,需要对标定方程的输入数据相机运动位姿和机器人末端运动位姿进行筛选。以式(8)中A(s)X=YB标定方程代数误差为筛选函数,设置合适的误差阈值e>0,可以降低标定方程输入数据的噪声对标定结果的影响。标定方程输入数据筛选方法流程如下:

首先利用线性方法求解标定方程(7), 计算每组相机和机器人运动位姿数据对应的误差值Cix-di,如果误差值大于数据筛选的阈值e,则删除此次相机运动数据重新计算,直到每组数据都满足筛选阈值后,再利用SOCP优化方法计算式(12)的最优问题。

具体实验中可以结合鲁棒方法(如随机抽样一致性和M值估计法)进行数据筛选。

5 测量实验与结果 5.1 仿真实验结果及分析

为模拟手眼标定现场的真实过程,在Inter CoreTM i5-4590 CPU @ 3.3 GHz、4 GB内存的PC机上,用Matlab R2014a(8.3)编程,利用PUMA560运动学模型建立机器人和摄像机运动轨迹仿真系统,如图 3所示。该仿真系统建立了世界坐标系、机器人基坐标系、机器人工具坐标系以及摄像机坐标系四者之间的联系,在50 mm×50 mm空间内随机模拟生成100个空间特征点,摄像机从9个不同的位姿对特征点进行投影变换。使用SFM算法求解缺失尺度因子的相机位姿变换矩阵Ai(i=1, …, 9),机器人工具坐标系的位姿变换矩阵Bi表 1的机器人D-H(Denavit-Hartenberg)参数求得。

图 3 仿真模型示意图 Fig.3 Schematic diagram of the simulation model

表 1 PUMA560机器人的D-H参数 Tab. 1 Denavit-Hartenberg parameters of the PUMA560 robot

为了验证方法在测量噪声下的鲁棒性,使用文献[4]中给定的机器人手眼关系以及机器人坐标系与世界坐标系方位关系变换矩阵作为模拟真值,分别给相机运动位姿变换矩阵A和机器人工具坐标系的位姿变换矩阵B加入不同等级的测量噪声,在同一噪声水平下,对每种标定方法进行200次独立重复标定实验,统计每种方法在随机生成的噪声值下计算得到的标定结果平均值XY与给定真值进行比较分析。

具体过程为:

首先,分别给相机运动矩阵A和PUMA560机器人位姿变换矩阵B添加高斯噪声,考虑到使用SFM算法求解相机运动矩阵误差主要来源于特征像点的提取精度,给特征点投影变换后的像面坐标加入均值为0、方差为η高斯噪声,其中,η为(0.01, 0.1)pixel间10等分值;考虑到目前市场上用于精密测量的小型多关节工业机器人重复定位精度都在0.025 mm左右,给PUMA560机器人姿态位姿矩阵B加入均值为0、方差为σ的关节变量偏移高斯噪声(offset),其中方差σ为(0.025, 0.25)间10等分值:

然后,设置数据筛选误差e为0.01,分别使用线性矩阵直积法[7](Linear Kronecker Product,LKP)、非线性对偶四元数法[16](Non-linear Dual Quaternion,NLDQ)和本文二阶锥规划法(SOCP)求解标定方程中的矩阵XY

最后,将以上标定过程重复200次,每次给相机运动矩阵A和PUMA560机器人位姿变换矩阵B添加随机生成的测量噪声值,统计标定矩阵平均值XY。将以上3种方法的手眼关系绝对误差和机器人方位绝对误差进行比较分析,仿真实验的误差结果如图 4所示。定义手眼关系绝对误差eX和机器人方位绝对误差eY分别为:

图 4 不同噪声水平下XY绝对误差比较 Fig.4 Absolute error in X and Y with different noise level

图 4中的仿真结果可知:

(1) 在特征点投影变换后的像面坐标加高斯噪声η的情况下,从图 4(a)(b)可以看出,在相同的噪声水平下,LKP方法(Δ表示)计算得到的手眼关系绝对误差eX和机器人方位绝对误差eY最大,而本文方法(*表示)计算得到的手眼关系绝对误差eX和机器人方位绝对误差eY最小,并且本文方法计算得到的绝对误差随噪声水平η增长速度最慢,稳定性最好。此外,在相机运动矩阵A存在高斯噪声的情况下,相比于手眼关系绝对误差eX,机器人方位绝对误差eY对高斯噪声更加敏感;

(2) 在给机器人关节变量加偏移噪声σoffsets的情况下,从图 4(c)(d)可以看出,3种方法进行比较,本文方法(*表示)计算得到的手眼关系和机器人方位精度最高。且随着噪声水平σ逐渐增大,绝对误差eXeY有逐渐收敛的趋势,而LKP(Δ表示)和NLDQ(○表示)方法计算误差随噪声水平σ增加呈现线性增长趋势;

(3) 随着噪声水平的不断增大,原标定问题的非凸性和过参数化问题越明显,此时LKP线性方法和NLDQ非线性方法都容易陷入局部最优解。而通过SOCP对原问题进行凸松弛操作,可以避开复杂的矩阵求逆运算和冗余参数化问题,最大限度保证在可行域内寻优的准确性和稳定性。

5.2 实测实验结果及分析

为了验证所提出方法在实际测量情况下的可行性与有效性,利用日本电装公司DENSO机器人VS-6577GM、大恒公司MER-500-14GM/GC型号的CMOS工业相机搭建实测实验平台。分别使用图 5(a)中标定参照物-平面靶标和图 5(b)~(c)中无标定的参照物(Book和Status)求解A(s)X=YB方程。DENSO机器人各方向的重复定位精度为±0.020 mm,各关节角分辨率为5″,相机分辨率为2 592×1 944 pixels,像元尺寸为2.2 μm×2.2 μm,镜头焦距为10 mm,实验前先将摄像机固紧在机器人末端执行器法兰盘上,设置数据筛选误差e为0.05。

图 5 机器人手眼标定中使用的参照物图片 Fig.5 Sample references images by accomplish hand-eye calibration
5.2.1 标定参照物实验

由于在实测实验中无法直接测量手眼关系X和机器人方位Y的绝对真值,为了验证本文方法的标定精度,将传统利用靶标作为参照物的手眼标定方法与本文提出的基于SFM的无标靶手眼标定改进方法进行比较分析。具体实验过程如下:

首先,利用机器人带动工业相机在以平面靶标原点为中心,半径约为600 mm的半球面上9个不同的位置对图 5(a)所示的11 mm×11 mm陶瓷棋盘格平面靶拍照成像,记录不同位姿下的机器人工具坐标系变换矩阵Bi(i=1, …, 9);

然后,用Zhang[24]方法标定相机内参数,求解不同位姿下的相机运动矩阵Ai,使用基于靶标参照物的传统标定方法[5](Zhuang)计算手眼关系Xbar和机器人方位Ybar

最后,利用上一步标定得到的相机内参数值和Wu[25]提出的SFM算法重新计算缺失尺度因子的相机运动矩阵Ai(s),使用基于SFM无靶标线性矩阵直积法[7](LKP)、非线性对偶四元数算法[17](NLDQ)和本文二阶锥规划法(SOCP)求解尺度因子s、手眼关系X和机器人方位Y,以标定方程的误差‖A(s)X-YB2(Zhuang方法中默认s=1)作为评估以上4种方法的精度评价标准,定义旋转矩阵eR和平移向量et相对误差分别:

为了验证各标定方法的可靠性,重复进行了10组完全独立的标定实验,取平均值进行比较分析,见图 6表 2所示:

图 6 4种方法的旋转和平移相对误差比较 Fig.6 Relative error in rotation and translation for four methods

表 2 标定参照物实验旋转和平移相对误差结果 Tab. 2 Real data experiment rotation and translation relative error result with calibration reference

图 6表 2可知:基于靶标参照物的传统标定方法(Zhuang)精度最高,这是由于平面靶标提供了更精确地空间约束条件。与上节仿真结果类似,基于SFM无靶标线性矩阵直积法(LKP)和非线性对偶四元数法(NLDQ)误差比较大,而本文的SOCP方法在没有精确的空间约束信息情况下,精度略低于传统标定方法。旋转矩阵相对误差为3.998%,平移向量相对误差为0.117%,主要是由于仅通过特征像点利用5点定向算法求解缺失尺度因子的相机运动矩阵存在偏差,影响标定方程的最终优化精度。提高特征像点的提取和匹配精度可以进一步减小缺失空间约束信息对标定方程求解精度的影响。

5.2.2 无标定参照物实验

为了验证本文方法在无标定参照物的真实场景下的可靠性,在实验台上移去靶标,选择如图 5(b)~(c)中的Book和Statue作为参照物,如图 7(a)为机器人带动相机拍摄书籍的封面图案,使用上节通过平面靶标得到的相机内参数结果和文献[24]的SFM算法求解缺失尺度因子的相机运动矩阵Ai(s),经过特征点匹配、三角测量和光束优化平差得到空间特征点的三维信息,如图 7(b)所示为对图 5(b)Book参照物中的5 035个特征点重建后的结果,耗时83 s。

图 7 实测实验平台 Fig.7 Real-data experiment

由于无法直接测量在真实测量场景下手眼关系X和机器人方位Y的绝对真值,为了评价在真实场景下本文方法的标定精度,以上节平面靶标标定的结果XbarYbar为真值,以Book和Statue一般场景为参照物。分别使用LKP、NLDQ和本文的SOCP方法计算手眼关系Xscene和机器人方位Yscene,进行比较分析,以上3种方法的手眼关系和机器人方位误差比较结果见表 3所示,定义手眼关系和机器人方位误差分别为:

表 3 无标定参照物手眼标定实验结果 Tab. 3 Real data experiment hand-eye calibration without calibration reference

表 3可知:针对2种不同类型的一般参照物,3种标定方法中,本文提出SOCP方法计算得到的手眼关系Xscene和机器人方位Yscene值更接近于上节基于平面靶标计算得到的手眼关系Xbar和机器人方位Ybar值。表明在没有标定参照物作为空间约束的条件下,SOCP方法也可以保证一定的标定精度和可靠性。

6 结论

针对移动机器人和内窥镜手术机器人在工作现场不适于用标定参照物实现手眼关系测量的缺陷,提出一种基于二阶锥规划的A(s)X=YB方程标定方法。该方法通过SFM算法引入相机运动矩阵尺度因子s同时解算手眼关系X及机器人与世界坐标系方位关系Y,利用二阶锥规划优化方法解决测量噪声引起的非凸性和过参数化问题。仿真和实测结果表明,在没有标定参照物作为精确空间约束信息的情况下,与其他标定方法相比,本文提出的方法可以最大限度避免优化结果陷入局部最优解,标定结果中旋转参数相对误差为3.998%,平移参数相对误差为0.117%。虽然标定结果的精度略低于传统基于靶标的标定方法,但扩展了手眼标定问题的应用范围,具有操作简单、成本低廉、适用范围广等优点。在工业和医疗等特殊现场移动机器人视觉测量系统使用中具有一定的应用潜力。

参考文献
[1]
林义闽, 吕乃光, 娄小平, 等. 用于弱纹理场景三维重建的机器人视觉系统[J]. 光学 精密工程, 2015, 23(2): 540-549.
LIN Y M, LÜ N G, LOU X P, et al. Robot vision system for 3D reconstruction in low texture environment[J]. Opt. Precision Eng., 2015, 23(2): 540-549. (in Chinese)
[2]
曹天扬, 蔡浩原, 方东明, 等. 结合图像内容匹配的机器人视觉导航定位与全局地图构建系统[J]. 光学 精密工程, 2017, 25(8): 2221-2232.
CAO T Y, CAI H Y, FANG D M, et al. Robot vision system for key frame global map establishment and robot localization based on graphic content matching[J]. Opt. Precision Eng., 2017, 25(8): 2221-2232. (in Chinese)
[3]
杨守瑞, 尹仕斌, 任永杰, 等. 机器人柔性视觉测量系统标定方法的改进[J]. 光学 精密工程, 2014, 22(12): 3239-3246.
YANG SH R, YIN SH B, REN Y J, et al. Improvement of calibration method for robotic flexible visual measurement systems[J]. Opt. Precision Eng., 2014, 22(12): 3239-3246. (in Chinese)
[4]
TSAI R Y, LENZ R K. A new technique for fully autonomous and efficient 3D robotics hand/eye calibration[J]. IEEE Transactions on robotics and automation, 1989, 5(3): 345-358. DOI:10.1109/70.34770
[5]
ZHUANG H Q, ROTH Z S, SUDHAKAR R. Simultaneous robot/world and tool/flange calibration by solving homogeneous transformation equations of the form AX=YB[J]. IEEE Transactions on Robotics and Automation, 1994, 10(4): 549-554. DOI:10.1109/70.313105
[6]
HORAUD R, DORNAIKA F. Hand-eye calibration[J]. The international journal of robotics research, 1995, 14(3): 195-210. DOI:10.1177/027836499501400301
[7]
SHAH M. Solving the robot-world/hand-eye calibration problem using the Kronecker product[J]. Journal of Mechanisms and Robotics, 2013, 5(3): No.031007.
[8]
DANⅡLIDIS K. Hand-eye calibration using dual quaternions[J]. The International Journal of Robotics Research, 1999, 18(3): 286-298. DOI:10.1177/02783649922066213
[9]
ULRICH M, STEGER C. Hand-eye calibration of SCARA robots using dual quaternions[J]. Pattern Recognition and Image Analysis, 2016, 26(1): 231-239. DOI:10.1134/S1054661816010272
[10]
LI H Y, MA Q L, WANG T M, et al. Simultaneous hand-eye and robot-world calibration by solving the AX=YB problem without correspondence[J]. IEEE Robotics and Automation Letters, 2016, 1(1): 145-152. DOI:10.1109/LRA.2015.2506663
[11]
HELLER J, HENRION D, PAJDLA T. Hand-eye and robot-world calibration by global polynomial optimization[C]///IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2014: 3157-3164. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6907313
[12]
HELLER J, HAVLENA M, PAJDLA T. A branch-and-bound algorithm for globally optimal hand-eye calibration[C]//Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, IEEE, 2012: 1608-1615. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6247853
[13]
李巍, 吕乃光, 董明利, 等. 基于对偶四元数的机器人方位与手眼关系同时标定方法[J]. 机器人, 2018, 40(8): 301-308.
LI W, LÜ N G, DONG M L, et al. Simultaneous Robot-World/Hand-Eye Calibration Using dual quaternion[J]. Robot, 2018, 40(8): 301-308. (in Chinese)
[14]
WU L, WANG J, QI L, et al. Simultaneous Hand-Eye, Tool-Flange, and Robot-Robot Calibration for Comanipulation by Solving the AXB=YCZ Problem[J]. IEEE Transactions on Robotics, 2016, 32(2): 413-428. DOI:10.1109/TRO.2016.2530079
[15]
TABB A, YOUSEF K M A. Solving the robot-world hand-eye (s) calibration problem with iterative methods[J]. Machine Vision and Applications, 2017, 1-22.
[16]
ANDREFF N, HORAUD R, ESPIAU B. Robot hand-eye calibration using structure-from-motion[J]. The International Journal of Robotics Research, 2001, 20(3): 228-248. DOI:10.1177/02783640122067372
[17]
SCHMIDT J, VOGT F, NIEMANN H. Calibration-free hand-eye calibration: a structure-from-motion approach[C]//Joint Pattern Recognition Symposium. Springer Berlin Heidelberg, 2005: 67-74.
[18]
HELLER J, HAVLENA M, SUGIMOTO A, et al.. Structure-from-motion based hand-eye calibration using L∞ minimization[C]Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, IEEE, 2011: 3497-3503. http://dl.acm.org/citation.cfm?id=2191740.2191873
[19]
陈明伟, 朱登明, 毛天露, 等. 基于二阶锥规划的运动控制相机轨迹跟踪研究[J]. 高技术通讯, 2013, 23(08): 840-847.
CHEN M W, ZHU D M, MAO T L, et al. Motion control camera tracking based on second cone programming[J]. Chinese High Technology Letters, 2013, 23(08): 840-847. DOI:10.3772/j.issn.1002-0470.2013.08.010 (in Chinese)
[20]
PACHTRACHAI K, ALLAN M, PAWAV, et al.. Hand-eye calibration for robotic assisted minimally invasive surgery without a calibration object[C]IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2016: 2485-2491. http://ieeexplore.ieee.org/document/7759387
[21]
WANG Z, LIU Z, MA Q, et al. Vision-Based Calibration of Dual RCM-Based Robot Arms in Human-Robot Collaborative Minimally Invasive Surgery[J]. IEEE Robotics and Automation Letters, 2017.
[22]
PARK Y, CHOI Y, SEO Y. Globally optimal camera-and-rotation-sensor calibration with a branch-and-bound algorithm[J]. Applied Optics, 2017, 56(12): 3462-3469. DOI:10.1364/AO.56.003462
[23]
刘一兵, 吴文传, 张伯明, 等. 基于混合整数二阶锥规划的主动配电网有功-无功协调多时段优化运行[J]. 中国电机工程学报, 2014, 34(16): 2575-2583.
LIU Y B, WU W CH, ZHANG B M, et al. A Mixed Integer Second-order Cone Programming Based Active and Reactive Power Coordinated Multi-period Optimization for Active Distribution Network[J]. Proceedings of the CSEE, 2014, 34(16): 2575-2583. (in Chinese)
[24]
ZHANG Z. A flexible new technique for camera calibration[J]. IEEE Transactions on pattern analysis and machine intelligence, 2000, 22(11): 1330-1334. DOI:10.1109/34.888718
[25]
WU C. Towards linear-time incremental structure from motion[C]3DTV-Conference, 2013 International Conference on, IEEE, 2013: 127-134. http://dl.acm.org/citation.cfm?id=2544800